Menu div.question,div.steps {font-size: 16px; padding: 10px;line-height: 20px; margin: 20px;} div.question{border: 1px solid #ccc;} div#solution .button{font-size: 20px; margin: 20px; width: 200px; padding: 10px; text-align: center;} div.hint,div.answer,div.steps{display: none;} div.pre_next{font-size: 30px; width:90%; margin:auto;} div.pre_next a.nav_pre{float:left;} div.pre_next a.nav_next{float:right;} div.title div.notes{ font-family:sans-serif, Arial; font-size: 18px; } 2. A position–time graph for a particle moving along the x axis is shown in Figure P2.5. (a) Find the average velocity in the time interval t = 1.50 s to t = 4.00 s. (b) Determine the instantaneous velocity at t = 2.00 s by measuring the slope of the tangent line shown in the graph. (c) At what value of t is the velocity zero? Hint overline(v) = (∆x)/(∆t) Answer (a) -2.4m//s (b) -3.7m//s (c) 4s Show Steps (a) From given graph red curve: x(1.50) = 8.0\ m x(4.00) = 2.0\ m overline(v) = (2.0m - 8.0m)/(4.00s - 1.5s) = color(red)(-2.4m//s) (b) From given graph green line we get : x(0) = 13.0m x(3.5) = 0 m slop of green line, which is the instantaneous velocity: v = (0m-13.0m)/(3.5s-0s) = color(red)(-3.7 m//s) (c) The velocity equals 0 when the slope of the tangent equals 0. And the slope of the tangent equals 0 when it's parallel to the time axis in given graph, where t = 4s.